

Solar Modeling for Systems Driven Approach

Mark Mehos, Hank Price, Craig Christensen, David Mooney, Robert Margolis, Nate Blair, Tom Ferguson

October 15, 2003

MYTP Systems Driven Approach Activities

- Develop Solar Systems Model
- Develop Market-Based Technical Targets and Impact Estimates
- Conduct Technology Benchmark, Validation, and Analysis Updates

Systems Modeling Development Approach

- Development of Stand-Alone PV Advisor Model
 - Quickly build PV model w/o need to wait for more complex integrated model
 - Support development of PV model w/ emphasis on standard cost and financial methodologies.
 - Integrate validated PV model components into solar advisor model
- Development of Integrated Solar Advisor Model
 - Performance/financial analysis of distributed, central station, and buildings-integrated solar technologies
 - Solar technologies will include PV, CSP, and SH systems
 - Beta model for at least one market (multiple technologies) will be developed in FY04

Modeling Project Plan (MYTP)

Vehicle Advisor Model

Solar Advisor Model

Model Development Tasks

- Develop Software Requirements Specification
- Develop Graphical User Interface
- Develop performance models for standard PV, CSP, and SH configurations
- Develop financial assumptions and models for standard configurations
- Integrate GUI, performance models, and financial models into first beta-model

PV Systems Analysis Model

Roland Hulstrom, David Mooney, and Bill Marion

Solar Energy Technologies
Systems Symposium

October 15, 2003

Model Considerations

- Component-level sensitivity analysis from system perspective
- Utilize analysis to inform R&D investment decisions
- Comprehensive model to accurately predict system performance
- Benchmarking effort critical to model credibility

Programmatic Context

PERFORMANCE MODULE

Inputs (Either fixed or variable)

- Module efficiency
- Module and inverter efficiency degradation rate
- Module and Inverter failure rates
- Inverter efficiency
- Electrical losses in wiring and connections, degradation
- Module mount angle
- Tracked or fixed
- System lifetime
- Solar resource

FINANCIAL MODULE

Inputs (Either fixed or variable)

- Cost of Module
- Cost of BOS
- O&M
- Financing terms and costs
- Incentives (buy downs, tax credits, CO₂ credits)
- Cost of land/siting
- Cost of permitting
- Local utility rate structure

PV Systems Analysis Model

- **Select/Modify** a Default System
- **Own System**

Select System Type

Utility Scale

BIPV

Commercial

Small-scale Stand Alone

Residential Grid-tied

Large Load Stand Alone

Commercial Scale System

- Work withDefault System
 - ▶ View Systems Specs
- Modify System Specs

Commercial Scale System

Commercial Scale System

- PV Module Performance Parameters
- PV Module Financial Parameters

Module Specs

Module Performance												
					Module Size							
Fixed Module Efficiency			13%	Fixed I	Module	Efficien	су		Total Are	a (m ²)	0.87	
Module E	Efficiency De	gradatio	n Rate (re	lative %/yr)		0.50%			Active Ar	rea (m²)	0.64	
Module F	ailure Rate (average	# per year	r)	0.5							
Soiling Lo	osses											

PV Cell Performance Parameters

Go back to systems schematic

PV Module Financial Parameters

Outputs

			Energy Cost per Year														
			Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11	Y12	Y13	Y14	Y15
Levelized	Cost per	Year	\$ 0.43	\$ 0.43	\$ 0.42	\$ 0.42	\$ 0.41	\$ 0.41	\$ 0.40	\$ 0.40	\$ 0.39	\$ 0.39	\$ 1.01	\$ 0.38	\$ 0.37	\$ 0.37	\$ 0.36
Energy Output (kWhr)		29,567	29,272	28,980	28,691	28,405	28,121	27,841	27,563	27,288	27,016	26,746	26,480	26,215	25,954	25,695	
Payments-	+O&M		\$12,757	\$12,469	\$12,189	\$11,916	\$11,650	\$11,392	\$11,140	\$10,894	\$10,656	\$10,423	\$26,997	\$9,976	\$9,762	\$9,553	\$9,350
AVERAGE ANNUAL COST OVER LIFETIME					\$11,251												
AVERAGE ANNUAL ENERGY OUTPUT				26,926													
LEVELIZ	LEVELIZED COST OF ELECTRICITY				\$ 0.42												

Go to Graphing Module

Graphing Module

Select Items You Wish to Plot

Performance Parameters

- ☑ Annual AC Output
- **■** Annual DC Output
- **Monthly Output**
- **Array Max Power**
- **Module Output**
- **Inverter Efficiency**
- **■** Irradiance

Financial Parameters

- **■** Annual Costs
- **Energy Value**
- **ILCOE**
- **System Cost Breakdown**
- Module Cost Breakdown
- **BOS Cost Breakdown**
- **■** System Payback

CUSTOM GRAPH

Graphing Module

Select Items You Wish to Plot

Performance Parameters

- **■** Annual AC Output
- **■** Annual DC Output
- **Monthly Output**
- **Array Max Power**
- **Module Output**
- **Inverter Efficiency**
- **■** Irradiance

Financial Parameters

- **■** Annual Costs
- **Energy Value**
- **ILCOE**
- **System Cost Breakdown**
- Module Cost Breakdown
- **BOS Cost Breakdown**
- **■** System Payback

CUSTOM GRAPH

Next Steps for PVSAM

- Convert Excel code to MatLab Code
- Continue visits with industry and others
- Compile/incorporate databases
- Evaluate/incorporate existing accessible models

Acknowledgements

- Roland Hulstrom
- Mark Mehos
- Craig Christensen
- Hank Price
- Charlie Hanley
- Nate Blair
- Bill Marion